Friday November 8 Lecture Notes

1 Projective Modules

A universal property characterization of free modules:
Proposition Let F be a free R modules and let B be a base for F. Suppose $i: B \rightarrow F$ is the inclusion map. Let M be any R module and let $f: B \rightarrow M$ be any function, then there exists unique g (R module homomorphism) s.t.

commutes.
Definition An R module P is projective if for all surjective R module homomorphisms $p: A \rightarrow B$ and all R module homomorphisms $h: P \rightarrow B$, there exists a unique g s.t.

commutes.
Proposition Free modules are projective.
Proof Let F be a free module with base $B=\left\{b_{i}: i \in I\right\}$. Suppose we have R module homomorphisms $p: A \rightarrow C$ (surjective) and $h: F \rightarrow C$. Since p is surjective, for each $i \in I$, there is $a_{i} \in A$ s.t. $p\left(a_{i}\right)=h\left(b_{i}\right)$. By freeness, there exists $g: F \rightarrow A$ with $b_{i} \mapsto a_{i}$.

Definition A functor $T: R$-mod $\rightarrow \operatorname{Grp}_{\text {Abel }}$ is exact if whenever $0 \rightarrow A \xrightarrow{i}$ $B \xrightarrow{p} C \rightarrow 0$ is exact, then $0 \rightarrow T(A) \xrightarrow{T_{i}} T(B) \xrightarrow{T_{p}} T(C) \rightarrow 0$ is exact.

Proposition An R module P is projective iff $\operatorname{Hom}_{R}\left(P,_{-}\right)$is exact.

Proof Take an exact sequence $0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$ (regardless of the assumption on $P, 0=\operatorname{Hom}_{R}(P, 0) \rightarrow \operatorname{Hom}_{R}(P, A) \xrightarrow{i_{*}} \operatorname{Hom}_{R}(P, B) \xrightarrow{p_{*}} \operatorname{Hom}_{R}(P, C)$ is exact). Note that ker $i_{*}=\left\{f \in \operatorname{Hom}_{R}(P, A): i f=0\right\}=\left\{f \in \operatorname{Hom}_{R}(P, A)\right.$: $f(P) \subseteq \operatorname{ker} i\}=0$. Now, $\operatorname{ker} p_{*}=\left\{g \in \operatorname{Hom}_{R}(P, B): p g=0\right\}=\{g \in$ $\left.\operatorname{Hom}_{R}(P, B): g(P) \subseteq \operatorname{ker} p\right\}=\left\{g \in \operatorname{Hom}_{R}(P, B): g(P) \subseteq \operatorname{im} i\right\}$, but i is injective, so for all $q \in P$, there exists a unique $a_{q} \in A$ s.t. $g(q)=i\left(a_{q}\right)$, so define $h \in \operatorname{Hom}_{R}(P, A)$ by $h(q)=a_{p}$. We can check that this is a module map homomorphism, and that $i h=g$, so $\operatorname{ker} p_{*}=\operatorname{im} i_{*}$. Suppose P is projective. Given $h: P \rightarrow C$, by projective there is g s.t.

commutes. So $h=p g=p_{*} g$, and thus p_{*} is onto, $\left.\operatorname{so}^{\operatorname{Hom}_{R}(P,}{ }_{-}\right)$is exact.
Suppose $\operatorname{Hom}_{R}\left(P,_{-}\right)$is exact. if $p: B \rightarrow C$ is a surjection, then $0 \rightarrow \operatorname{ker} p \rightarrow$ $B \xrightarrow{p} C \rightarrow 0$ is exact. So P_{*} is surjective, and given $h: P \rightarrow C$, there is g with $p_{*} g=h$, i.e.,

commutes. So p is projective.
Proposition Let P be an R module. Then P be projective iff every short exact sequence $0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$ splits.

Proof Assume P is projective. Then there exists j s.t.

commutes, but $p j=1_{P}$, so j is the splitting map. Now suppose every short exact sequence of the given form splits. Take a surjection $q: B \rightarrow C$ and $f: P \rightarrow C$, and consider

where $D=\{(b, p): b \in B, p \in P, q(b)=f(p)\}$ is an R module and it has two coordinate projections π_{B} and π_{P} (as it turns out, this is a categorical pullback). Surjectivity of q implies that for any $p \in P$, there is b s.t. $q(b)=f(p)$, so π_{P} is surjective, and $0 \rightarrow \operatorname{ker} \pi_{P} \rightarrow D \xrightarrow{\pi_{P}} P \rightarrow 0$ splits by hypothesis, by $h: P \rightarrow D$, say, s.t.

commutes. So $\pi_{B} h$ shows that p is projective.
Proposition An R module P is projective iff P is a direct summand of a free module.

Proof Suppose P is projective. Every module is a quotient of a free module, so, in particular, there is some surjection $g: F \rightarrow P$ where F is free. So $0 \rightarrow \operatorname{ker} g \rightarrow F \rightarrow P \rightarrow 0$ is exact, so it splits, and $F \simeq P \oplus \operatorname{ker} g$. Assume P is a direct summand of a free module F. Then, we have a surjection $g: F \rightarrow P$ and $j: P \rightarrow F$, and $g j=1_{P}$. Suppose there is a surjection $q: B \rightarrow C$ and a $\operatorname{map} f: P \rightarrow C$ s.t.

commutes. Since F is free, it is projective, and so there is h s.t.

commutes, and thus $h j$ satisfies the definition of projectivity for P.
e.g. Take $R=\mathbb{Z} / 6 \mathbb{Z}=\{0,1,2,3,4,5\}$, and let $I=\{0,3\}$ and $J=\{0,2,4\}$ be ideals of R. Then $R=I \oplus J$, but neither I, nor J are free as R modules, but they are projective.

2 Chain Complexes

Definition Let M be an R module. A projective resolution of M is an exact sequence $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$, where P_{0}, P_{1}, \ldots are projective modules. A projective resolution is a free resolution if P_{0}, P_{1}, \ldots are free.

Proposition Every module M has a free resolution.
Proof Choose a spanning set of M, and let F_{0} be the free module on this set. Consider $0 \rightarrow \operatorname{ker} \varepsilon_{0} \rightarrow F_{0} \xrightarrow{\varepsilon_{0}} M \rightarrow 0$, where ε_{0} takes the spanning set to itself. Also, $0 \rightarrow \operatorname{ker} \varepsilon_{1} \rightarrow F_{1} \xrightarrow{\varepsilon_{1}} \operatorname{ker} \varepsilon_{0} \rightarrow 0$, and

Then $\operatorname{im} d_{1}=\operatorname{im} \varepsilon_{1}=\operatorname{ker} \varepsilon_{0}$, which proves exactness. Moreover, $\operatorname{ker} d_{1}=\operatorname{ker} \varepsilon_{1}$, which also proves exactness. Continue this process to obtain a free resolution.

Definition A chain complex $C_{\bullet}\left(\right.$ or $\left.\left(C_{\bullet}, d_{\bullet}\right)\right)$ is a sequence of modules and maps for $n \in \mathbb{Z}, \cdots \rightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \xrightarrow{d_{n-1}} \cdots$, in which $d_{n} d_{n+1}=0$. Here, d_{n} is called differentiation.

Note: $d_{n} d_{n+1}=0$ iff im $d_{n+1} \subseteq \operatorname{ker} d_{n}$
e.g. An exact sequence, infinite in both directions, is a chain complex.
e.g. $\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots$ (the zero complex 0 •)
e.g. An exact sequence which ends with 0 can be extended: $\cdots \rightarrow 0 \rightarrow 0 \rightarrow$ $0 \rightarrow \cdots$
e.g. Let $C_{\bullet}=\cdots \rightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \xrightarrow{d_{n-1}} \cdots$ be a chain complex, and let $F: R-\bmod \rightarrow R-\bmod$ be a functor with the additive property: $F(f+g)=$ $F(f)+F(g)$ for morphism f and g. Then

$$
F\left(C_{\bullet}\right)=\cdots \rightarrow F\left(C_{n+1}\right) \xrightarrow{F\left(d_{n+1}\right)} F\left(C_{n}\right) \xrightarrow{F\left(d_{n}\right)} F\left(C_{n-1}\right) \xrightarrow{F\left(d_{n-1}\right)} \cdots
$$

is a chain complex because the additive property implies that $F(f+0)=F(f)+$ $F(0)=F(f)$, i.e., $F(0)=0=F\left(d_{n} d_{n+1}\right)=F\left(d_{n}\right) F\left(d_{n+1}\right)$ (since F is a functor).

Note: $F\left(C_{\bullet}\right)$ may not be exact even if C_{\bullet} is exact.
Definition If $\left(C_{\bullet}, d_{\bullet}\right)$ is a chain complex, then n-cycles, $Z_{n}\left(C_{\bullet}\right)=\operatorname{ker} d_{n} \subseteq C_{n}$, and n-boundaries $B_{n}\left(C_{\bullet}\right)=\operatorname{im} d_{n+1} \subseteq C_{n}$.

Note: $\operatorname{im} d_{n+1} \subseteq \operatorname{ker} d_{n}$, so $B_{n}\left(C_{\bullet}\right) \subseteq Z_{n}\left(C_{\bullet}\right)$.
Definition If C_{\bullet} is a chain complex, then the nth homology $H_{n}\left(C_{\bullet}\right)=Z_{n}\left(C_{\bullet}\right) / B_{n}\left(C_{\bullet}\right)$.

Note: We can make a category of chain complexes. The objects will be chain complexes of R modules, and the morphism will be chain maps. For each $n \in \mathbb{Z}$, H_{n} is a functor from chain complexes to R modules.

We saw what H_{n} does on objects, but what about the morphisms?

Given

we define $H_{n}\left(f_{\bullet}\right): H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(C_{\bullet}^{\prime}\right)$ iff $H_{n}\left(f_{\bullet}\right)=Z_{n}\left(C_{\bullet}\right) / B_{n}\left(C_{\bullet}\right) \rightarrow Z_{n}\left(C_{\bullet}^{\prime}\right) / B_{n}\left(C_{\bullet}^{\prime}\right)$ by $z_{n}+B_{n}\left(C_{\bullet}\right) \mapsto f_{n}\left(z_{n}\right)+B_{n}\left(C_{\bullet}^{\prime}\right)$.

Version: 1.1

